

Journal Website: http://usajournalshub.c om/index,php/tajet

Copyright: Original content from this work may be used under the terms of the creative commons attributes 4.0 licence.

The Use Of Fractal Theory In Digital Signal Processing In Radio Communication Systems

Davronbekov Dilmurod Abdujalilovich

Doctor Of Technical Sciences, Tashket University Of Information Technologies Named After Muhammad Al-Khorazmiy, Tashkent City, Uzbekistan

Tuychiev Bekzod Oromovich

Applicant For The Tashket University Of Information Technologies Named After Muhammad Al-Khwarizmi, Tashkent City, Uzbekistan

ABSTRACT

When digital signal processing in a radio communication system, it is advisable to calculate the fractal dimension D and the Hausdorff dimension based on the topological mathematical expression D_o, analyze the methods of digital signal processing by the electro-optical method, i.e. perform experimental calculations of fractal points.

KEYWORDS

Fractal dimension, analyze the methods, dimension calculated.

INTRODUCTION

We assume that there exists a positive number C for which the inequality N (ϵ) $\geq c / \epsilon^2$ is valid for any $\epsilon > 0$, where r is some integer. Then:

$$D = \lim_{\varepsilon \to 0} \inf \left[-\frac{\log N(\varepsilon)}{\log \varepsilon} \right].$$
(1)

The Hausdorff dimension calculated using formula (1) for some deterministic fractal models is shown in Table 1. [1].

Table 1

Deterministic fractal models	D	D ₀
Cantor set	$\ln 2 / \ln 3 \approx 0,63$	0
Koch curve model	$\ln 4 / \ln 3 \approx 1,26$	1
Mandelbrot-Tiven model	$\ln 8 / \ln 3 \approx 1,89$	1
Sierpinski's napkin model	$\ln 3 / \ln 2 \approx 1,58$	1
Sierpinski carpet model	$\ln 8 / \ln 3 \approx 1,89$	1
Tosper Curve Model	$\ln 3 / \ln \sqrt{7} \approx 1,13$	1
Liecher universal curve model	$\ln 20 / \ln 3 \approx 2,73$	1

Fractal D and topological D_0 dimensions of some deterministic fractal models

MATERIALS AND METHODS

The fractal dimension, called the correlation dimension, is widely used by experimenters [2,3,4] and is determined by the correlation integral:

$$C(r) = \lim_{N \to \infty} \frac{1}{N^2} \sum_{i,j=1}^{N} \theta(\vec{r} - |\vec{x_i} - \vec{x_j}|), \quad (2).$$

which is evaluated directly for a sequence of points.

In this $|(x_i)^{-1}(x_j)^{-1}|$ - distance between pedals of points $(x_i)^{-1}$ and $(x_j)^{-1}$;

 θ – unit function..

For many fractals, the correlation integral depends on r as $r \rightarrow o$ according to a power law, i.e.

$$C(r) = r^{D_3}.$$
 (3)

Therefore, the fractal correlation dimension D_3 (or the correlation indicator [v = D] _3) is determined by the slope of the straight graph ln [C(r)=f(lnr)].

Currently, there are no devices that generate a signal at the output that is proportional to the fractal dimension. Electro-optical methods, however, make it possible to determine an approach to solving this problem [7]. In practice, in numerical and physical experiments, fractal dimensions D are found by sampling signals with subsequent data processing on a computer. In digital algorithms, 103 - 106 points are used to calculate D, which requires enormous computational costs, although there are more rational programs containing about 500 samples [5].

The analysis showed that in digital processing, as a rule, one of three main methods is used: time discretization of variables in phase space, calculation of Poincaré mappings, or one-time measurements of a time series (space embedding method).

Determination of fractal dimension using Poincaré mappings is used to find, mainly, D strange attractors [4]. If the fractal dimension of the Poincaré map (0 <D <2) does not depend on the phase of the Poincaré map $(0 \le \omega t \le 2\pi)$, then the dimension of the full attractor is D_A = 1 + D. This measurement method is used for non-linear circuits [6].

Thus, several methods of digital processing were analyzed, in which the theory of fractals was used in the process of experimental research. Fractal D and topological dimension D_o were determined by some deterministic fractal models.

REFERENCE

- Dimensional theory: Per. from English. M .: IL, 1948. - 232 p .; 2nd ed., Rev. - M .: Editorial URSS, 2004. - 304 p.
- Deterministic chaos: Per. from English; Ed. A.V. Gaponov-Grekhov and M.I. Rabinovich. - M .: Mir, 1988 - 240 p.
- **3.** Characterization of Strange Attractors//Phys. Rev. Lett. 1983. V. 50, № 5. P. 346-349.
- The Fractal Dimension of the Two-Well Potential Strange Attractors//Physica D. 1985. V. 17, № 1. P. 99-108.
- Calculating the Dimension of Attractors from Small Data Sets//Phys. Lett. A. 1986. V. 114, № 5. P. 217-221.
- Period Doubling and Chaotic Behavior in a Driven, Anharmonic Oscillator//Phys. Rev. Lett. 1981. V. 47, № 19. P. 1349-1352.
- 7. C. K. Lee, F.C. Moon An Optical Technique for Measuring Fractal Dimensions of Planar Poincare Maps // Phys. A.1986. V. 114, № 5.P.222-226